Exploring symmetry breaking at the Dicke quantum phase transition.
نویسندگان
چکیده
We study symmetry breaking at the Dicke quantum phase transition by coupling a motional degree of freedom of a Bose-Einstein condensate to the field of an optical cavity. Using an optical heterodyne detection scheme, we observe symmetry breaking in real time and distinguish the two superradiant phases. We explore the process of symmetry breaking in the presence of a small symmetry-breaking field and study its dependence on the rate at which the critical point is crossed. Coherent switching between the two ordered phases is demonstrated.
منابع مشابه
Quantum phase transitions and spontaneous symmetry-breaking in Dicke Model
A method to find the Excited-States Quantum Phase Transitions (ESQPT’s) from paritysymmetry in the Dicke model is studied and presented. This method allows us to stablish a critical energy where ESQPT’s take places, and divides the whole energy spectrum in two regions with different properties.
متن کاملرهیافت معادلات جریان در مدل آیزینگ کوانتمی یک بعدی
One dimensional quantum Ising model with nearest neighbor interaction in transverse magnetic field is one of the simplest spin models which undergo quantum phase transition. This model has been precisely solved using different methods. In this paper, we solve this model in uniform magnetic field -Jgσxn precisely using a new method called Continuous Unitary Transformations (CUT) or flow equation...
متن کاملDynamical Quantum Phase Transitions in Systems with Continuous Symmetry Breaking
Interacting many-body systems that are driven far away from equilibrium can exhibit phase transitions between dynamically emerging quantum phases, which manifest as singularities in the Loschmidt echo. Whether and under which conditions such dynamical transitions occur in higher-dimensional systems with spontaneously broken continuous symmetries is largely elusive thus far. Here, we study the d...
متن کاملDissipative Phase Transitions
The transport properties of a quantum mechanical system coupled to an environment deviate sharply from those of the isolated system when the coupling exceeds a critical value. This effect is governed by a quantum phase transition, which takes place because the environment suppresses quantum fluctuations. This paper explains why dissipation leads to spontaneous symmetry breaking at T = 0, and ho...
متن کاملPhase Transition in (2 + 1)d Quantum Gravity
(2 + 1) dimensional gravity is equivalent to an exactly soluble non-Abelian Chern-Simons gauge field theory [1]. Regarding this as the topological phase of quantum gravity in (2+1)d, we suggest a topological symmetry breaking by introducing a mass term for the gauge fields, which carries a space-time metric and local dynamical degrees of freedom. We consider the finite temperature behavior of t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 107 14 شماره
صفحات -
تاریخ انتشار 2011